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Abstract

Application of wastewater biosolids as a fertilizer on agricul-
tural fields may release pollutants such as microplastics and
per- and polyfluoroalkyl substances (PFAS) into the air and
pose a serious inhalation risk. This article quantifies the total
PFAS and microplastics present in biosolids, discusses their
potential transport by wind, and highlights research needs to
estimate inhalation risks of PFAS and microplastics in bio-
solids. Analyzing published data, we found that the dust from
biosolid-applied land could be enriched with microplastics and
PFAS. Microplastics are more susceptible to suspension by
wind than natural soil particles. Future studies should measure
microplastics and associated PFAS in dust and biosolids and
quantify the exposure risks.
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Introduction
Sludge from municipal wastewater treatment plants

(WWTPs) is widely applied as biosolids to agricultural
fields as part of sustainable use of fertilizers [1,2]. Bio-
solids are used as fertilizer because they contain a high
concentration of nitrogen, phosphorous, organic carbon,
and other essential elements, which can have beneficial
effects on soil quality and crop production [1,3].
Furthermore, unlike commercial fertilizers, biosolids
www.sciencedirect.com
release nutrients slowly, thereby reducing the eutro-

phication risk [4]. However, biosolids could also contain
toxic pollutants present in wastewater including
microplastics [5e7], heavy metals [8], antibiotic resis-
tance genes [9]), organic pollutants [10], and per- and
polyfluoroalkyl substances (PFAS) [11]. Among these
pollutants, microplastics, and PFAS are very persistent
with a half-life exceeding several decades [12e14].
Thus, they are expected to accumulate in soil. In the
US, more than 51% of the biosolids are currently applied
on land, which may serve as a secondary source of these
persistent pollutants. A recent analysis of worldwide

data reveals that biosolids applied to agricultural fields
can release up to 1080 trillion microplastics into the
environment [6]. Microplastics found in wastewater
could contain pollutants including PFAS [15]. Applica-
tion of biosolids could increase particle-bound PFAS
such as microplastics with adsorbed PFAS in soil. Thus,
preferential emission of these contaminated micro-
plastics by wind, owing to their lighter weight than other
soil particles, may lead to enrichment of PFAS and
microplastics in the fugitive dust. Climate change (e.g.,
more frequent droughts, crop failures, and fires), and

lack of proper soil conservation measures have rendered
agricultural soils highly susceptible to accelerated soil
erosion [16,17]. Thus, it is critical to understand the
fate, accumulation, and release of PFAS and micro-
plastics in biosolids applied agricultural soils.

The fate of PFAS and microplastics accumulated on
biosolid-applied land is unclear. PFAS can adsorb onto
organic carbon, metal oxides, and clay minerals in
subsurface soil [18,19], can enter crops via root [20e
22]. The remaining amount can be washed off by

stormwater runoff or infiltrate into the ground [23] if
they are not degraded. Some precursors can also be
oxidized to produce PFAS in the subsurface [18]. On
the other hand, microplastics, owing to their large size,
can be filtered from infiltrating water and remain in the
topsoil [24]. Thus, these pollutants can be assumed to
accumulate in topsoil, where they may pose inhalation
risk due to preferential entrainment of lighter particles
such as microplastics by the wind. Several studies have
confirmed a high concentration of both microplastics
and PFAS in dust samples [25,26]. Inhaling
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2 Environmental Pollution: Microplastics in agroecosystems
microplastics can cause breathing irritation and oxida-
tive stress in lung tissues, along with general inflam-
matory responses in airways and bronchi [27]. Chronic
exposure can also cause death [28]. Similarly, inhala-
tion of PFAS can cause acute lung toxicity and inhibit
lung surfactant function [29]. Thus, future studies
should estimate the inhalation risk of both micro-
plastics and PFAS from biosolids applied to land. In this

study, we reviewed 27 peer-reviewed journal articles
that reported microplastic and PFAS concentrations in
biosolids and analyzed 8 articles that reported PFAS
concentrations in dust samples to evaluate their
transport potential by the wind. Furthermore, we sug-
gest specific areas of research, which can further
improve our understanding of the aerial transport of
these pollutants.
How much microplastics and PFAS are
present in biosolids?
Several studies provided evidence of the presence of
microplastics in biosolids and preferential enrichment of
microplastics in dust emitted from biosolid-applied land
[21,30e32]. Surveying 20 research articles published
after 2015, we estimate that microplastic concentration

in sludges ranges between 800 and 41,000 pieces per
kilogram. However, the common detection methods
used to count microplastics in biosolids may underesti-
mate or even exclude many microplastics smaller than
10 mm [6]dthe fraction that could pose a greater risk for
human and animal health [33e35]. Due to the difficulty
in the detection of smaller plastics, the concentration of
microplastics in biosolids can be underestimated [6].
Comparing the fraction of total microplastics removed
from wastewater to microplastics detected in biosolids,
the same study found that microplastics detected in
biosolids constitute only 4% of the removed micro-

plastics, indicating most of them in biosolids evade
detection potentially due to change in size or surface
properties. Of those detected, most particles are of fiber
shape indicating a higher concentration of fibers are
available for resuspension via wind [24,30,36]. Indeed, a
higher concentration of fibers was frequently found in
dust samples [37,38], indicating fiber-shaped plastics
could also be more susceptible to resuspension by the
wind. For instance, based on the orientation or contact
points on soil grain, fibers may experience drag or shear
force more than smaller fragments if a greater portion of

the fiber is dangled into the air from soil surface.
However, further study is needed to confirm this hy-
pothesis. Nevertheless, a high concentration of fibers in
the dust sample could have other unintended health
risks. For instance, the aspect ratio or shape of asbestos,
another particulate air pollutant with type I carcinoge-
nicity, plays a critical role in developing lung disease
[39,40]. Thus, future studies should examine if the
shape of microplastics has any correlation with toxicity
in the lungs.
Current Opinion in Environmental Science & Health 2022, 25:100309
We analyzed 7 studies that measured perfluoroalkyl
carboxylic acid (PFCA) concentrations in biosolids from
multiple wastewater treatment plants in the US,
Canada, Australia, and Spain (list in the Supplementary
Material) and observed that biosolids in the US have a
significantly higher amount of PFCA than that produced
in other countries (Figure 1). This could be due to the
continued use of PFAS precursors in domestic and in-

dustrial products in the US [41] or more sensitive
methods used to detect PFAS in the reported study.
Consequently, PFAS concentrations in biosolids have
not decreased even after the use of long-chain PFAS was
phased out in 2002 [11,42]. A high concentration of
PFCA in the USbiosolids indicates a greater risk of PFAS
exposure using those biosolids in agriculture than those
produced in other reported developed countries. Thus,
biosolid applications should be regulated based on the
amount of PFAS found in them [42]. A previous study
estimated that up to 3450 kg of PFAS may be released

into the environment via biosolids each year in the US
[11]). Based on the usage of biosolids reported by the
US Environmental Protection Agency (EPA), 1760 kg of
PFAS could be deposited on land via land application
annually, from where they could spread into the envi-
ronment via stormwater runoff and wind and infiltrate
into groundwater [18]. As most PFAS are retained
within subsurface or root zone, they can be taken up by
plants or crops and enter the food chain [43]. Among all
these modes of exposure, exposure via air is a direct
threat to human health as there is little to no mitiga-

tion measure.
Why do microplastics and PFAS-associated
with microplastics pose increased
inhalation risk compared to other natural
particles?
Many studies have directly measured microplastic con-
centration suspended in air [38,44,45] and deposited on
land [46,47] or trapped on tree canopies [48]. Further-
more, microplastics have been repeatedly found in
remote areas and higher elevations far away from their
source [49e53], indicating they are highly susceptible
to be airborne. A theoretical framework for microplastic
transport by wind has been proposed [54]. Briefly,
microplastics can be released into the air by direct
resuspension or by the disintegration of biosolid aggre-
gates via saltation. As plastics, depending on type and

manufacturing process, are 30e60% lighter than natural
soil minerals, microplastics are more likely to be
entrained up by wind. Interparticle forces between
plastic particles and soil grain and soil moisture content
could all play a critical role in determining the number of
microplastics emitted from biosolid-applied land under
given conditions. Therefore, future studies should
evaluate how microplastic type, shape, and biosolid
characteristics such as moisture content could affect the
resuspension of microplastics by the wind.
www.sciencedirect.com
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Figure 1

(a) Perfluorocarboxylic acid concentrations in biosolids from the USA and other countries (Australia, Canada, and Spain). ‘**’ and ‘***’ symbols indicate a
p-value less than 0.01 and 0.001, respectively. ns denotes non-significant. (b) The total amount of PFAS deposited on land via biosolid application. (c)
amount of PFAS released into the environment via biosolids, of which only a small fraction of them is detected, and the rest of them are too small (<10 mm)
to detect using current technologies, therefore are not accounted for.

Microplastics and PFAS in biosolids Borthakur et al. 3
As most PFAS are non-volatile, with an exception of
volatile precursors, PFAS concentration in the air could
be dominated by PFAS associated with dust or micro-
plastics. Analyzing eight studies that measured the
PFAS concentration in dust samples from indoor
www.sciencedirect.com
environments, we show that a significant fraction of
total PFAS measured in the air are associated with dust,
aerosol, and other particulate matter, and the long-
chained PFAS are enriched in the dust (Figure 2b).
Our analysis also reveals that an increase in PFAS
Current Opinion in Environmental Science & Health 2022, 25:100309
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Figure 2

(a) Mechanism of microplastic emission from the land where biosolids are
applied. (b) PFAS concentrations in dust emitted from land-based on 8
studies (Supplementary Material). The dashed lines refer to concentra-
tions of SPCB, Anthracene and BDE-17 reported in the literature [56,57].
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chain length increases their association with dust.
Increased affinity of long-chained PFAS with solid
surfaces explained this observation [55]. The PFAS

concentrations observed in these studies are compara-
ble to other legacy organic pollutants typically found in
the dust (Figure 2b): polycyclic aromatic hydrocarbons
(PAH), polybrominated diphenyl ethers (PBDE), and
Current Opinion in Environmental Science & Health 2022, 25:100309
polychlorinated biphenyls (PCBs) [56,57]. The anal-
ysis indicates that PFAS has a similar potential of aerial
transport as other organic pollutants, even though
PFAS exposure via inhalation did not receive a similar
level of attention as other organic pollutants.

Biosolids can also release fine particles or colloids when
subjected to natural drying and freezeethaw cycles,

which can carry PFAS to subsurface and groundwater at
a concentration higher than the EPA advisory limits.
Previous laboratory studies [58,59] show that the pres-
ence of colloids released by these natural cycles can
increase the PFAS concentration in water samples by 3e
15 times. The same colloids can be suspended by the
wind. Thus, microplastics in biosolids can be enriched
with long-chained PFAS, similar to the other organic or
inorganic particles or colloids. However, PFAS concen-
tration on microplastics in biosolids is rarely measured.
Furthermore, most airborne particles have a size of less

than 1 mm, and microplastics of size less than 10 mm are
difficult to detect due to the limitation of the optical
microscope. Thus, future studies should examine the
concentration of nano or submicron size plastic particles
in dust samples and the concentration of attached PFAS
on them.
Needs for future research
Analyzing eight studies that measured the PFAS con-
centration in dust samples from indoor environments,
we show that a significant fraction of total PFAS
measured in the air is associated with dust, aerosol, and
other particulate matters, and the long-chained PFAS
are concentrated in the dust. Analysis of the reported
studies confirmed that the dust released from biosolids
could be enriched with microplastics and PFAS.
Therefore, the application of biosolids may increase the

inhalation risks of microplastics and PFAS. Thus, future
studies should quantify the concentration of both pol-
lutants in dust emitted from biosolid-applied land.
Detection of smaller microplastics (<10 mm) in bio-
solids is challenging, and the concentration could vary by
orders of magnitude based on sample collection method,
sample volume, filter cutoff size used to isolate plastic
particles from water, organic digestion method, density
stratification solution, counting methodology, and
method detection limit [6]. Estimating microplastics in
biosolids often require complex sample preparation

procedures and the use of expensive microscopes,
thereby limiting the usability of the method in the
agriculture field. Thus, it is critical to develop a simple,
rapid method of isolating and quantifying microplastics
from environmental samples. Microplastics obtained
from field studies are shown to have significantly higher
PFAS concentrations than those measured in laboratory
settings [60]. The result indicates that aging could
affect PFAS adsorption on microplastics. Future studies
should examine PFAS adsorption and desorption on
www.sciencedirect.com
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Microplastics and PFAS in biosolids Borthakur et al. 5
aged and fresh plastic surfaces to understand the fate of
adsorbed PFAS on microplastics. Microplastics with
PFAS could pose higher risks than uncontaminated
microplastics. Thus, the lung toxicity of microplastics
should be evaluated as a function of adsorbed PFAS in
addition to the shape of microplastics, and the age
of microplastics.
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